* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			47 lines
		
	
	
		
			931 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			931 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f43e1000cf542c50ff50
 | ||
| title: 'Problem 210: Obtuse Angled Triangles'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301852
 | ||
| dashedName: problem-210-obtuse-angled-triangles
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Consider the set $S(r)$ of points ($x$,$y$) with integer coordinates satisfying $|x| + |y| ≤ r$.
 | ||
| 
 | ||
| Let $O$ be the point (0,0) and $C$ the point ($\frac{r}{4}$,$\frac{r}{4}$).
 | ||
| 
 | ||
| Let $N(r)$ be the number of points $B$ in $S(r)$, so that the triangle $OBC$ has an obtuse angle, i.e. the largest angle $α$ satisfies $90°<α<180°$.
 | ||
| 
 | ||
| So, for example, $N(4)=24$ and $N(8)=100$.
 | ||
| 
 | ||
| What is $N(1\\,000\\,000\\,000)$?
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `obtuseAngledTriangles()` should return `1598174770174689500`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(obtuseAngledTriangles(), 1598174770174689500);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function obtuseAngledTriangles() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| obtuseAngledTriangles();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |