* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			62 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4411000cf542c50ff53
 | ||
| title: 'Problem 212: Combined Volume of Cuboids'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301854
 | ||
| dashedName: problem-212-combined-volume-of-cuboids
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| An axis-aligned cuboid, specified by parameters $\{ (x_0,y_0,z_0), (dx,dy,dz) \}$, consists of all points ($X$,$Y$,$Z$) such that $x_0 ≤ X ≤ x_0 + dx$, $y_0 ≤ Y ≤ y_0 + dy$ and $z_0 ≤ Z ≤ z_0 + dz$. The volume of the cuboid is the product, $dx × dy × dz$. The combined volume of a collection of cuboids is the volume of their union and will be less than the sum of the individual volumes if any cuboids overlap.
 | ||
| 
 | ||
| Let $C_1, \ldots, C_{50000}$ be a collection of 50000 axis-aligned cuboids such that $C_n$ has parameters
 | ||
| 
 | ||
| $$\begin{align}
 | ||
|   & x_0 = S_{6n - 5} \\; \text{modulo} \\; 10000    \\\\
 | ||
|   & y_0 = S_{6n - 4} \\; \text{modulo} \\; 10000    \\\\
 | ||
|   & z_0 = S_{6n - 3} \\; \text{modulo} \\; 10000    \\\\
 | ||
|   & dx = 1 + (S_{6n - 2} \\; \text{modulo} \\; 399) \\\\
 | ||
|   & dy = 1 + (S_{6n - 1} \\; \text{modulo} \\; 399) \\\\
 | ||
|   & dz = 1 + (S_{6n} \\; \text{modulo} \\; 399)     \\\\
 | ||
| \end{align}$$
 | ||
| 
 | ||
| where $S_1, \ldots, S_{300000}$ come from the "Lagged Fibonacci Generator":
 | ||
| 
 | ||
| For $1 ≤ k ≤ 55$, $S_k = [100003 - 200003k + 300007k^3] \\; (modulo \\; 1000000)$
 | ||
| 
 | ||
| For $56 ≤ k$, $S_k = [S_{k - 24} + S_{k - 55}] \\; (modulo \\; 1000000)$
 | ||
| 
 | ||
| Thus, $C_1$ has parameters $\{(7,53,183), (94,369,56)\}$, $C_2$ has parameters $\{(2383,3563,5079), (42,212,344)\}$, and so on.
 | ||
| 
 | ||
| The combined volume of the first 100 cuboids, $C_1, \ldots, C_{100}$, is 723581599.
 | ||
| 
 | ||
| What is the combined volume of all 50000 cuboids, $C_1, \ldots, C_{50000}$?
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `combinedValueOfCuboids()` should return `328968937309`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(combinedValueOfCuboids(), 328968937309);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function combinedValueOfCuboids() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| combinedValueOfCuboids();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |