* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			56 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4421000cf542c50ff55
 | |
| title: 'Problem 214: Totient Chains'
 | |
| challengeType: 5
 | |
| forumTopicId: 301856
 | |
| dashedName: problem-214-totient-chains
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let $φ$ be Euler's totient function, i.e. for a natural number $n$, $φ(n)$ is the number of $k$, $1 ≤ k ≤ n$, for which $gcd(k,n) = 1$.
 | |
| 
 | |
| By iterating $φ$, each positive integer generates a decreasing chain of numbers ending in 1. E.g. if we start with 5 the sequence 5,4,2,1 is generated. Here is a listing of all chains with length 4:
 | |
| 
 | |
| $$\begin{align}
 | |
|    5,4,2,1 & \\\\
 | |
|    7,6,2,1 & \\\\
 | |
|    8,4,2,1 & \\\\
 | |
|    9,6,2,1 & \\\\
 | |
|   10,4,2,1 & \\\\
 | |
|   12,4,2,1 & \\\\
 | |
|   14,6,2,1 & \\\\
 | |
|   18,6,2,1 &
 | |
| \end{align}$$
 | |
| 
 | |
| Only two of these chains start with a prime, their sum is 12.
 | |
| 
 | |
| What is the sum of all primes less than $40\\,000\\,000$ which generate a chain of length 25?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `totientChains()` should return `1677366278943`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(totientChains(), 1677366278943);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function totientChains() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| totientChains();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |