* fix: clean-up Project Euler 221-240 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			62 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			62 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f45b1000cf542c50ff6d
 | |
| title: 'Problem 238: Infinite string tour'
 | |
| challengeType: 5
 | |
| forumTopicId: 301883
 | |
| dashedName: problem-238-infinite-string-tour
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Create a sequence of numbers using the "Blum Blum Shub" pseudo-random number generator:
 | |
| 
 | |
| $$
 | |
| s_0 = 14025256 \\\\
 | |
| s_{n + 1} = {s_n}^2 \\; mod \\; 20\\,300\\,713
 | |
| $$
 | |
| 
 | |
| Concatenate these numbers $s_0s_1s_2\ldots$ to create a string $w$ of infinite length. Then, $w = 14025256741014958470038053646\ldots$
 | |
| 
 | |
| For a positive integer $k$, if no substring of $w$ exists with a sum of digits equal to $k$, $p(k)$ is defined to be zero. If at least one substring of $w$ exists with a sum of digits equal to $k$, we define $p(k) = z$, where $z$ is the starting position of the earliest such substring.
 | |
| 
 | |
| For instance:
 | |
| 
 | |
| The substrings 1, 14, 1402, … with respective sums of digits equal to 1, 5, 7, … start at position 1, hence $p(1) = p(5) = p(7) = \ldots = 1$.
 | |
| 
 | |
| The substrings 4, 402, 4025, … with respective sums of digits equal to 4, 6, 11, … start at position 2, hence $p(4) = p(6) = p(11) = \ldots = 2$.
 | |
| 
 | |
| The substrings 02, 0252, … with respective sums of digits equal to 2, 9, … start at position 3, hence $p(2) = p(9) = \ldots = 3$.
 | |
| 
 | |
| Note that substring 025 starting at position 3, has a sum of digits equal to 7, but there was an earlier substring (starting at position 1) with a sum of digits equal to 7, so $p(7) = 1$, not 3.
 | |
| 
 | |
| We can verify that, for $0 < k ≤ {10}^3$, $\sum p(k) = 4742$.
 | |
| 
 | |
| Find $\sum p(k)$, for $0 < k ≤ 2 \times {10}^{15}$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `infiniteStringTour()` should return `9922545104535660`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(infiniteStringTour(), 9922545104535660);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function infiniteStringTour() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| infiniteStringTour();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |