* fix: clean-up Project Euler 241-260 * fix: typo * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4601000cf542c50ff73
 | ||
| title: 'Problem 243: Resilience'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301890
 | ||
| dashedName: problem-243-resilience
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| A positive fraction whose numerator is less than its denominator is called a proper fraction.
 | ||
| 
 | ||
| For any denominator, $d$, there will be $d−1$ proper fractions; for example, with $d = 12$:
 | ||
| 
 | ||
| $$\frac{1}{12}, \frac{2}{12}, \frac{3}{12}, \frac{4}{12}, \frac{5}{12}, \frac{6}{12}, \frac{7}{12}, \frac{8}{12}, \frac{9}{12}, \frac{10}{12}, \frac{11}{12}$$
 | ||
| 
 | ||
| We shall call a fraction that cannot be cancelled down a resilient fraction.
 | ||
| 
 | ||
| Furthermore we shall define the resilience of a denominator, $R(d)$, to be the ratio of its proper fractions that are resilient; for example, $R(12) = \frac{4}{11}$.
 | ||
| 
 | ||
| In fact, $d = 12$ is the smallest denominator having a resilience $R(d) < \frac{4}{10}$.
 | ||
| 
 | ||
| Find the smallest denominator $d$, having a resilience $R(d) < \frac{15\\,499}{94\\,744}$.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `resilience()` should return `892371480`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(resilience(), 892371480);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function resilience() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| resilience();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |