* fix: clean-up Project Euler 241-260 * fix: typo * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-255-rounded-square-roots.md Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			44 lines
		
	
	
		
			676 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			44 lines
		
	
	
		
			676 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f46e1000cf542c50ff81
 | |
| title: 'Problem 258: A lagged Fibonacci sequence'
 | |
| challengeType: 5
 | |
| forumTopicId: 301906
 | |
| dashedName: problem-258-a-lagged-fibonacci-sequence
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| A sequence is defined as:
 | |
| 
 | |
| - $g_k = 1$, for $0 ≤ k ≤ 1999$
 | |
| - $g_k = g_{k - 2000} + g_{k - 1999}$, for $k ≥ 2000$.
 | |
| 
 | |
| Find $g_k$ mod 20092010 for $k = {10}^{18}$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `laggedFibonacciSequence()` should return `12747994`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(laggedFibonacciSequence(), 12747994);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function laggedFibonacciSequence() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| laggedFibonacciSequence();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |