* fix: clean-up Project Euler 281-300 * fix: missing image extension * fix: missing power Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: missing subscript Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			47 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4861000cf542c50ff98
 | |
| title: 'Problem 281: Pizza Toppings'
 | |
| challengeType: 5
 | |
| forumTopicId: 301932
 | |
| dashedName: problem-281-pizza-toppings
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| You are given a pizza (perfect circle) that has been cut into $m·n$ equal pieces and you want to have exactly one topping on each slice.
 | |
| 
 | |
| Let $f(m,n)$ denote the number of ways you can have toppings on the pizza with $m$ different toppings ($m ≥ 2$), using each topping on exactly $n$ slices ($n ≥ 1$). Reflections are considered distinct, rotations are not.
 | |
| 
 | |
| Thus, for instance, $f(2,1) = 1$, $f(2,2) = f(3,1) = 2$ and $f(3,2) = 16$. $f(3,2)$ is shown below:
 | |
| 
 | |
| <img class="img-responsive center-block" alt="animation with 16 ways to have 3 different toppings on 2 slices each" src="https://cdn.freecodecamp.org/curriculum/project-euler/pizza-toppings.gif" style="background-color: white; padding: 10px;">
 | |
| 
 | |
| Find the sum of all $f(m,n)$ such that $f(m,n) ≤ {10}^{15}$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `pizzaToppings()` should return `1485776387445623`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(pizzaToppings(), 1485776387445623);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function pizzaToppings() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| pizzaToppings();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |