* fix: clean-up Project Euler 301-320 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			49 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4ab1000cf542c50ffbe
 | |
| title: 'Problem 319: Bounded Sequences'
 | |
| challengeType: 5
 | |
| forumTopicId: 301975
 | |
| dashedName: problem-319-bounded-sequences
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let $x_1, x_2, \ldots, x_n$ be a sequence of length $n$ such that:
 | |
| 
 | |
| - $x_1 = 2$
 | |
| - for all $1 < i ≤ n : x_{i - 1} < x_i$
 | |
| - for all $i$ and $j$ with $1 ≤ i, j ≤ n : {(x_i)}^j < {(x_j + 1)}^i$
 | |
| 
 | |
| There are only five such sequences of length 2, namely: {2,4}, {2,5}, {2,6}, {2,7} and {2,8}. There are 293 such sequences of length 5; three examples are given below: {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}.
 | |
| 
 | |
| Let $t(n)$ denote the number of such sequences of length $n$. You are given that $t(10) = 86195$ and $t(20) = 5227991891$.
 | |
| 
 | |
| Find $t({10}^{10})$ and give your answer modulo $10^9$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `boundedSequences()` should return `268457129`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(boundedSequences(), 268457129);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function boundedSequences() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| boundedSequences();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |