* fix: rework challenge to use argumnet in function * fix: add solution * fix: position block evenly between paragraphs
		
			
				
	
	
	
		
			2.0 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			2.0 KiB
		
	
	
	
	
	
	
	
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName | 
|---|---|---|---|---|
| 5900f3b91000cf542c50fecc | Problem 77: Prime summations | 5 | 302190 | problem-77-prime-summations | 
--description--
It is possible to write ten as the sum of primes in exactly five different ways:
  7 + 3
5 + 5
5 + 3 + 2
3 + 3 + 2 + 2
2 + 2 + 2 + 2 + 2
5 + 5
5 + 3 + 2
3 + 3 + 2 + 2
2 + 2 + 2 + 2 + 2
What is the first value which can be written as the sum of primes in over n ways?
--hints--
primeSummations(5) should return a number.
assert(typeof primeSummations(5) === 'number');
primeSummations(5) should return 11.
assert.strictEqual(primeSummations(5), 11);
primeSummations(100) should return 31.
assert.strictEqual(primeSummations(100), 31);
primeSummations(1000) should return 53.
assert.strictEqual(primeSummations(1000), 53);
primeSummations(5000) should return 71.
assert.strictEqual(primeSummations(5000), 71);
--seed--
--seed-contents--
function primeSummations(n) {
  return true;
}
primeSummations(5);
--solutions--
function primeSummations(n) {
  function getSievePrimes(max) {
    const primesMap = new Array(max).fill(true);
    primesMap[0] = false;
    primesMap[1] = false;
    const primes = [];
    for (let i = 2; i < max; i += 2) {
      if (primesMap[i]) {
        primes.push(i);
        for (let j = i * i; j < max; j += i) {
          primesMap[j] = false;
        }
      }
      if (i === 2) {
        i = 1;
      }
    }
    return primes;
  }
  const MAX_NUMBER = 100;
  const primes = getSievePrimes(MAX_NUMBER);
  for (let curNumber = 2; curNumber < MAX_NUMBER; curNumber++) {
    const combinations = new Array(curNumber + 1).fill(0);
    combinations[0] = 1;
    for (let i = 0; i < primes.length; i++) {
      for (let j = primes[i]; j <= curNumber; j++) {
        combinations[j] += combinations[j - primes[i]];
      }
    }
    if (combinations[curNumber] > n) {
      return curNumber;
    }
  }
  return false;
}