5.4 KiB
id, title, challengeType, videoUrl
id | title | challengeType | videoUrl |
---|---|---|---|
587d8256367417b2b2512c7a | 在二叉搜索树中查找最小值和最大值 | 1 |
--description--
这一系列挑战将介绍树数据结构。树木是计算机科学中重要且通用的数据结构。当然,他们的名字来源于这样一个事实:当他们看到它们时,它们看起来很像我们在自然界中熟悉的树木。树数据结构以一个节点(通常称为根)开始,并从此处分支到其他节点,每个节点可以具有更多子节点,依此类推。数据结构通常以顶部的根节点可视化;你可以把它想象成一棵倒置的天然树。首先,让我们描述一下我们将在树上遇到的一些常用术语。根节点是树的顶部。树中的数据点称为节点。具有通向其他节点的分支的节点被称为分支通向的节点的父节点(子节点)。其他更复杂的家庭术语适用于您所期望的。子树是指特定节点的所有后代,分支可以称为边,而叶节点是树末端没有子节点的节点。最后,请注意树本质上是递归数据结构。也就是说,节点的任何子节点都是其子树的父节点,依此类推。在为常见树操作设计算法时,树的递归性质非常重要。首先,我们将讨论一种特定类型的树,即二叉树。实际上,我们实际上将讨论一个特定的二叉树,一个二叉搜索树。让我们来描述这意味着什么。虽然树数据结构可以在单个节点上具有任意数量的分支,但是二叉树对于每个节点只能具有两个分支。此外,针对子子树排序二叉搜索树,使得左子树中的每个节点的值小于或等于父节点的值,并且右子树中的每个节点的值是大于或等于父节点的值。
现在这个有序的关系很容易看到。请注意,根节点8左侧的每个值都小于8,右侧的每个值都大于8.还要注意,此关系也适用于每个子树。例如,第一个左子项是子树。 3是父节点,它有两个子节点 - 通过控制二进制搜索树的规则,我们知道甚至没有看到这个节点的左子节点(及其任何子节点)将小于3,右边child(及其任何子级)将大于3(但也小于结构的根值),依此类推。二进制搜索树是非常常见且有用的数据结构,因为它们在几种常见操作(例如查找,插入和删除)的平均情况下提供对数时间。说明:我们将从简单开始。除了为树创建节点的函数之外,我们还在这里定义了二叉搜索树结构的骨架。观察每个节点可能具有左右值。如果它们存在,将为它们分配子子树。在我们的二叉搜索树中,定义两个方法, findMin
和findMax
。这些方法应返回二叉搜索树中保存的最小值和最大值(不用担心现在向树中添加值,我们在后台添加了一些值)。如果遇到困难,请反思二进制搜索树必须为true的不变量:每个左子树小于或等于其父树,每个右子树大于或等于其父树。我们还要说我们的树只能存储整数值。如果树为空,则任一方法都应返回null
。
--hints--
存在BinarySearchTree
数据结构。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
二叉搜索树有一个名为findMin
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMin == 'function';
})()
);
二叉搜索树有一个名为findMax
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.findMax == 'function';
})()
);
findMin
方法返回二叉搜索树中的最小值。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMin !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMin() == 1;
})()
);
findMax
方法返回二叉搜索树中的最大值。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMax !== 'function') {
return false;
}
test.add(4);
test.add(1);
test.add(7);
test.add(87);
test.add(34);
test.add(45);
test.add(73);
test.add(8);
return test.findMax() == 87;
})()
);
findMin
和findMax
方法为空树返回null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.findMin !== 'function') {
return false;
}
if (typeof test.findMax !== 'function') {
return false;
}
return test.findMin() == null && test.findMax() == null;
})()
);