Files
freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-27-quadratic-primes.md

1.2 KiB
Raw Blame History

id, title, challengeType, videoUrl
id title challengeType videoUrl
5900f3871000cf542c50fe9a 问题27二次素数 5

--description--

欧拉发现了显着的二次公式:$ n ^ 2 + n + 41 事实证明,公式将为连续的整数值 0 \ le n \ le 39 产生40个素数。但是 n = 40时40 ^ 2 + 40 + 41 = 4040 + 1+ 41 可被41整除当然 n = 41时41 ^ 2 + 41 + 41 显然可以被整除41.发现了令人难以置信的公式 n ^ 2 - 79n + 1601 ,它为连续值 0 \ le n \ le 79 $产生80个素数。系数-79和1601的乘积是-126479。考虑形式的二次方

$ n ^ 2 + an + b ,其中 | a | <range | b | \ le $ 其中 | n | n 的模数/绝对值,例如 | 11 | = 11 | -4 | = 4 $

找到系数的乘积,$ a b ,用于生成连续值 n 的最大素数数的二次表达式,从 n = 0 $开始。

--hints--

quadraticPrimes(200)应返回-4925。

assert(quadraticPrimes(200) == -4925);

quadraticPrimes(500)应返回-18901。

assert(quadraticPrimes(500) == -18901);

quadraticPrimes(800)应返回-43835。

assert(quadraticPrimes(800) == -43835);

quadraticPrimes(1000)应返回-59231。

assert(quadraticPrimes(1000) == -59231);

--solutions--