Files
freeCodeCamp/curriculum/challenges/english/08-coding-interview-prep/project-euler/problem-64-odd-period-square-roots.english.md
Valeriy 79d9012432 fix(curriculum): quotes in tests (#18828)
* fix(curriculum): tests quotes

* fix(curriculum): fill seed-teardown

* fix(curriculum): fix tests and remove unneeded seed-teardown
2018-10-20 23:32:47 +05:30

179 lines
2.1 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f3ac1000cf542c50febf
challengeType: 5
title: 'Problem 64: Odd period square roots'
---
## Description
<section id='description'>
All square roots are periodic when written as continued fractions and can be written in the form:
√N = a0 +
1
a1 +
1
a2 +
1
a3 + ...
For example, let us consider √23:
√23 = 4 + √23 — 4 = 4 + 
1
 = 4 + 
1
1√23—4
1 + 
√23 37
If we continue we would get the following expansion:
√23 = 4 +
1
1 +
1
3 +
1
1 +
1
8 + ...
The process can be summarised as follows:
a0 = 4,
1√23—4
 = 
√23+47
 = 1 + 
√23—37
a1 = 1,
7√23—3
 = 
7(√23+3)14
 = 3 + 
√23—32
a2 = 3,
2√23—3
 = 
2(√23+3)14
 = 1 + 
√23—47
a3 = 1,
7√23—4
 = 
7(√23+4)7
 = 8 + 
√23—4
a4 = 8,
1√23—4
 = 
√23+47
 = 1 + 
√23—37
a5 = 1,
7√23—3
 = 
7(√23+3)14
 = 3 + 
√23—32
a6 = 3,
2√23—3
 = 
2(√23+3)14
 = 1 + 
√23—47
a7 = 1,
7√23—4
 = 
7(√23+4)7
 = 8 + 
√23—4
It can be seen that the sequence is repeating. For conciseness, we use the notation √23 = [4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.
The first ten continued fraction representations of (irrational) square roots are:
√2=[1;(2)], period=1
√3=[1;(1,2)], period=2
√5=[2;(4)], period=1
√6=[2;(2,4)], period=2
√7=[2;(1,1,1,4)], period=4
√8=[2;(1,4)], period=2
√10=[3;(6)], period=1
√11=[3;(3,6)], period=2
√12= [3;(2,6)], period=2
√13=[3;(1,1,1,1,6)], period=5
Exactly four continued fractions, for N ≤ 13, have an odd period.
How many continued fractions for N ≤ 10000 have an odd period?
</section>
## Instructions
<section id='instructions'>
</section>
## Tests
<section id='tests'>
```yml
tests:
- text: <code>euler64()</code> should return 1322.
testString: assert.strictEqual(euler64(), 1322, '<code>euler64()</code> should return 1322.');
```
</section>
## Challenge Seed
<section id='challengeSeed'>
<div id='js-seed'>
```js
function euler64() {
// Good luck!
return true;
}
euler64();
```
</div>
</section>
## Solution
<section id='solution'>
```js
// solution required
```
</section>