Oliver Eyton-Williams 0bd52f8bd1
Feat: add new Markdown parser (#39800)
and change all the challenges to new `md` format.
2020-11-27 10:02:05 -08:00

1.1 KiB
Raw Blame History

id, title, challengeType, forumTopicId
id title challengeType forumTopicId
5900f3f51000cf542c50ff08 Problem 137: Fibonacci golden nuggets 5 301765

--description--

Consider the infinite polynomial series AF(x) = xF1 + x2F2 + x3F3 + ..., where Fk is the kth term in the Fibonacci sequence: 1, 1, 2, 3, 5, 8, ... ; that is, Fk = Fk1 + Fk2, F1 = 1 and F2 = 1.

For this problem we shall be interested in values of x for which AF(x) is a positive integer.

Surprisingly AF(1/2)

=

(1/2).1 + (1/2)2.1 + (1/2)3.2 + (1/2)4.3 + (1/2)5.5 + ...

= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...

= 2 The corresponding values of x for the first five natural numbers are shown below.

xAF(x) √211 1/22 (√132)/33 (√895)/84 (√343)/55

We shall call AF(x) a golden nugget if x is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget.

--hints--

euler137() should return 1120149658760.

assert.strictEqual(euler137(), 1120149658760);

--seed--

--seed-contents--

function euler137() {

  return true;
}

euler137();

--solutions--

// solution required