54 lines
1.0 KiB
Markdown
54 lines
1.0 KiB
Markdown
---
|
||
id: 5900f4201000cf542c50ff33
|
||
title: 'Problem 180: Rational zeros of a function of three variables'
|
||
challengeType: 5
|
||
forumTopicId: 301816
|
||
---
|
||
|
||
# --description--
|
||
|
||
For any integer n, consider the three functions
|
||
|
||
f1,n(x,y,z) = xn+1 + yn+1 − zn+1f2,n(x,y,z) = (xy + yz + zx)\*(xn-1 + yn-1 − zn-1)f3,n(x,y,z) = xyz\*(xn-2 + yn-2 − zn-2)
|
||
|
||
and their combination
|
||
|
||
fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) − f3,n(x,y,z)
|
||
|
||
We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a / b with
|
||
|
||
0 < a < b ≤ k and there is (at least) one integer n, so that fn(x,y,z) = 0.
|
||
|
||
Let s(x,y,z) = x + y + z.
|
||
|
||
Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35. All the s(x,y,z) and t must be in reduced form.
|
||
|
||
Find u + v.
|
||
|
||
# --hints--
|
||
|
||
`euler180()` should return 285196020571078980.
|
||
|
||
```js
|
||
assert.strictEqual(euler180(), 285196020571078980);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler180() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler180();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|