Oliver Eyton-Williams 0bd52f8bd1
Feat: add new Markdown parser (#39800)
and change all the challenges to new `md` format.
2020-11-27 10:02:05 -08:00

802 B
Raw Blame History

id, title, challengeType, forumTopicId
id title challengeType forumTopicId
5900f5131000cf542c510024 Problem 421: Prime factors of n15+1 5 302091

--description--

Numbers of the form n15+1 are composite for every integer n > 1.

For positive integers n and m let s(n,m) be defined as the sum of the distinct prime factors of n15+1 not exceeding m.

E.g. 215+1 = 3×3×11×331. So s(2,10) = 3 and s(2,1000) = 3+11+331 = 345.

Also 1015+1 = 7×11×13×211×241×2161×9091. So s(10,100) = 31 and s(10,1000) = 483. Find ∑ s(n,108) for 1 ≤ n ≤ 1011.

--hints--

euler421() should return 2304215802083466200.

assert.strictEqual(euler421(), 2304215802083466200);

--seed--

--seed-contents--

function euler421() {

  return true;
}

euler421();

--solutions--

// solution required