freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-180-rational-zeros-of-a-function-of-three-variables.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4201000cf542c50ff33 Problem 180: Rational zeros of a function of three variables 5 301816 problem-180-rational-zeros-of-a-function-of-three-variables

--description--

For any integer n, consider the three functions

f1,n(x,y,z) = xn+1 + yn+1 zn+1f2,n(x,y,z) = (xy + yz + zx)*(xn-1 + yn-1 zn-1)f3,n(x,y,z) = xyz*(xn-2 + yn-2 zn-2)

and their combination

fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) f3,n(x,y,z)

We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers of the form a / b with

0 < a < b ≤ k and there is (at least) one integer n, so that fn(x,y,z) = 0.

Let s(x,y,z) = x + y + z.

Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples (x,y,z) of order 35. All the s(x,y,z) and t must be in reduced form.

Find u + v.

--hints--

euler180() should return 285196020571078980.

assert.strictEqual(euler180(), 285196020571078980);

--seed--

--seed-contents--

function euler180() {

  return true;
}

euler180();

--solutions--

// solution required