Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.0 KiB

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4ff1000cf542c510011 Problem 402: Integer-valued polynomials 5 302070 problem-402-integer-valued-polynomials

--description--

It can be shown that the polynomial n4 + 4n3 + 2n2 + 5n is a multiple of 6 for every integer n. It can also be shown that 6 is the largest integer satisfying this property.

Define M(a, b, c) as the maximum m such that n4 + an3 + bn2 + cn is a multiple of m for all integers n. For example, M(4, 2, 5) = 6.

Also, define S(N) as the sum of M(a, b, c) for all 0 < a, b, c ≤ N.

We can verify that S(10) = 1972 and S(10000) = 2024258331114.

Let Fk be the Fibonacci sequence: F0 = 0, F1 = 1 and Fk = Fk-1 + Fk-2 for k ≥ 2.

Find the last 9 digits of Σ S(Fk) for 2 ≤ k ≤ 1234567890123.

--hints--

euler402() should return 356019862.

assert.strictEqual(euler402(), 356019862);

--seed--

--seed-contents--

function euler402() {

  return true;
}

euler402();

--solutions--

// solution required