Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-461-almost-pi.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

51 lines
878 B
Markdown

---
id: 5900f53a1000cf542c51004c
title: 'Problem 461: Almost Pi'
challengeType: 5
forumTopicId: 302136
dashedName: problem-461-almost-pi
---
# --description--
Let fn(k) = ek/n - 1, for all non-negative integers k.
Remarkably, f200(6) + f200(75) + f200(89) + f200(226) = 3.141592644529… ≈ π.
In fact, it is the best approximation of π of the form fn(a) + fn(b) + fn(c) + fn(d) for n = 200.
Let g(n) = a2 + b2 + c2 + d 2 for a, b, c, d that minimize the error: | fn(a) + fn(b) + fn(c) + fn(d) - π|
(where |x| denotes the absolute value of x).
You are given g(200) = 62 + 752 + 892 + 2262 = 64658.
Find g(10000).
# --hints--
`euler461()` should return 159820276.
```js
assert.strictEqual(euler461(), 159820276);
```
# --seed--
## --seed-contents--
```js
function euler461() {
return true;
}
euler461();
```
# --solutions--
```js
// solution required
```