* fix(curriculum): tests quotes * fix(curriculum): fill seed-teardown * fix(curriculum): fix tests and remove unneeded seed-teardown
		
			
				
	
	
		
			89 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f45b1000cf542c50ff6d
 | 
						||
challengeType: 5
 | 
						||
title: 'Problem 238: Infinite string tour'
 | 
						||
---
 | 
						||
 | 
						||
## Description
 | 
						||
<section id='description'>
 | 
						||
Create a sequence of numbers using the "Blum Blum Shub" pseudo-random number generator:
 | 
						||
 | 
						||
s0
 | 
						||
    =
 | 
						||
    14025256
 | 
						||
  sn+1
 | 
						||
    =
 | 
						||
    sn2 mod 20300713
 | 
						||
 | 
						||
 | 
						||
Concatenate these numbers  s0s1s2… to create a string w of infinite length.
 | 
						||
Then, w = 14025256741014958470038053646…
 | 
						||
 | 
						||
For a positive integer k, if no substring of w exists with a sum of digits equal to k, p(k) is defined to be zero. If at least one substring of w exists with a sum of digits equal to k, we define p(k) = z, where z is the starting position of the earliest such substring.
 | 
						||
 | 
						||
For instance:
 | 
						||
 | 
						||
The substrings 1, 14, 1402, …
 | 
						||
with respective sums of digits equal to 1, 5, 7, …
 | 
						||
start at position 1, hence p(1) = p(5) = p(7) = … = 1.
 | 
						||
 | 
						||
The substrings 4, 402, 4025, …
 | 
						||
with respective sums of digits equal to 4, 6, 11, …
 | 
						||
start at position 2, hence p(4) = p(6) = p(11) = … = 2.
 | 
						||
 | 
						||
The substrings 02, 0252, …
 | 
						||
with respective sums of digits equal to 2, 9, …
 | 
						||
start at position 3, hence p(2) = p(9) = … = 3.
 | 
						||
 | 
						||
Note that substring 025 starting at position 3, has a sum of digits equal to 7, but there was an earlier substring (starting at position 1) with a sum of digits equal to 7, so p(7) = 1, not 3.
 | 
						||
 | 
						||
We can verify that, for 0 < k ≤ 103, ∑ p(k) = 4742.
 | 
						||
 | 
						||
Find ∑ p(k), for 0 < k ≤ 2·1015.
 | 
						||
</section>
 | 
						||
 | 
						||
## Instructions
 | 
						||
<section id='instructions'>
 | 
						||
 | 
						||
</section>
 | 
						||
 | 
						||
## Tests
 | 
						||
<section id='tests'>
 | 
						||
 | 
						||
```yml
 | 
						||
tests:
 | 
						||
  - text: <code>euler238()</code> should return 9922545104535660.
 | 
						||
    testString: assert.strictEqual(euler238(), 9922545104535660, '<code>euler238()</code> should return 9922545104535660.');
 | 
						||
 | 
						||
```
 | 
						||
 | 
						||
</section>
 | 
						||
 | 
						||
## Challenge Seed
 | 
						||
<section id='challengeSeed'>
 | 
						||
 | 
						||
<div id='js-seed'>
 | 
						||
 | 
						||
```js
 | 
						||
function euler238() {
 | 
						||
  // Good luck!
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
euler238();
 | 
						||
```
 | 
						||
 | 
						||
</div>
 | 
						||
 | 
						||
 | 
						||
 | 
						||
</section>
 | 
						||
 | 
						||
## Solution
 | 
						||
<section id='solution'>
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 | 
						||
</section>
 |