1.3 KiB
1.3 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f3f91000cf542c50ff0b | Problem 141: Investigating progressive numbers, n, which are also square | 5 | 301770 | problem-141-investigating-progressive-numbers-n-which-are-also-square |
--description--
A positive integer, n, is divided by d and the quotient and remainder are q and r respectively. In addition d, q, and r are consecutive positive integer terms in a geometric sequence, but not necessarily in that order.
For example, 58 divided by 6 has a quotient of 9 and a remainder of 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric sequence (common ratio \frac{3}{2}).
We will call such numbers, n, progressive.
Some progressive numbers, such as 9 and 10404 = {102}^2, also happen to be perfect squares. The sum of all progressive perfect squares below one hundred thousand is 124657.
Find the sum of all progressive perfect squares below one trillion ({10}^{12}).
--hints--
progressivePerfectSquares() should return 878454337159.
assert.strictEqual(progressivePerfectSquares(), 878454337159);
--seed--
--seed-contents--
function progressivePerfectSquares() {
return true;
}
progressivePerfectSquares();
--solutions--
// solution required