* fix: clean-up Project Euler 381-400 * fix: missing image extension * fix: missing subscripts Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1005 B
1005 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4ef1000cf542c510001 | Problem 386: Maximum length of an antichain | 5 | 302050 | problem-386-maximum-length-of-an-antichain |
--description--
Let n be an integer and S(n) be the set of factors of n.
A subset A of S(n) is called an antichain of S(n) if A contains only one element or if none of the elements of A divides any of the other elements of A.
For example: S(30) = \\{1, 2, 3, 5, 6, 10, 15, 30\\}
\\{2, 5, 6\\} is not an antichain of S(30).
\\{2, 3, 5\\} is an antichain of S(30).
Let N(n) be the maximum length of an antichain of S(n).
Find \sum N(n) for 1 ≤ n ≤ {10}^8
--hints--
maximumLengthOfAntichain() should return 528755790.
assert.strictEqual(maximumLengthOfAntichain(), 528755790);
--seed--
--seed-contents--
function maximumLengthOfAntichain() {
return true;
}
maximumLengthOfAntichain();
--solutions--
// solution required