* fix: clean-up Project Euler 381-400 * fix: missing image extension * fix: missing subscripts Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
1021 B
1021 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f4f21000cf542c510005 | Problem 390: Triangles with non rational sides and integral area | 5 | 302055 | problem-390-triangles-with-non-rational-sides-and-integral-area |
--description--
Consider the triangle with sides \sqrt{5}, \sqrt{65} and \sqrt{68}. It can be shown that this triangle has area 9.
S(n) is the sum of the areas of all triangles with sides \sqrt{1 + b^2}, \sqrt{1 + c^2} and \sqrt{b^2 + c^2} (for positive integers b and c) that have an integral area not exceeding n.
The example triangle has b = 2 and c = 8.
S({10}^6) = 18\\,018\\,206.
Find S({10}^{10}).
--hints--
nonRationalSidesAndIntegralArea() should return 2919133642971.
assert.strictEqual(nonRationalSidesAndIntegralArea(), 2919133642971);
--seed--
--seed-contents--
function nonRationalSidesAndIntegralArea() {
return true;
}
nonRationalSidesAndIntegralArea();
--solutions--
// solution required