1.2 KiB
1.2 KiB
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5231000cf542c510034 | Problem 438: Integer part of polynomial equation's solutions | 5 | 302109 | problem-438-integer-part-of-polynomial-equations-solutions |
--description--
For an $n$-tuple of integers t = (a_1, \ldots, a_n), let (x_1, \ldots, x_n) be the solutions of the polynomial equation x^n + a_1x^{n - 1} + a_2x^{n - 2} + \ldots + a_{n - 1}x + a_n = 0.
Consider the following two conditions:
x_1, \ldots, x_nare all real.- If
x_1, ..., x_nare sorted,⌊x_i⌋ = ifor1 ≤ i ≤ n. (⌊·⌋:floor function.)
In the case of n = 4, there are 12 $n$-tuples of integers which satisfy both conditions.
We define S(t) as the sum of the absolute values of the integers in t.
For n = 4 we can verify that \sum S(t) = 2087 for all $n$-tuples t which satisfy both conditions.
Find \sum S(t) for n = 7.
--hints--
polynomialIntegerPart() should return 2046409616809.
assert.strictEqual(polynomialIntegerPart(), 2046409616809);
--seed--
--seed-contents--
function polynomialIntegerPart() {
return true;
}
polynomialIntegerPart();
--solutions--
// solution required