* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
817 B
817 B
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName |
|---|---|---|---|---|
| 5900f5331000cf542c510045 | Problem 454: Diophantine reciprocals III | 5 | 302127 | problem-454-diophantine-reciprocals-iii |
--description--
In the following equation x, y, and n are positive integers.
\frac{1}{x} + \frac{1}{y} = \frac{1}{n}
For a limit L we define F(L) as the number of solutions which satisfy x < y ≤ L.
We can verify that F(15) = 4 and F(1000) = 1069.
Find F({10}^{12}).
--hints--
diophantineReciprocalsThree() should return 5435004633092.
assert.strictEqual(diophantineReciprocalsThree(), 5435004633092);
--seed--
--seed-contents--
function diophantineReciprocalsThree() {
return true;
}
diophantineReciprocalsThree();
--solutions--
// solution required