53 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
title: Backtracking Algorithms
 | 
						||
localeTitle: 回溯算法
 | 
						||
---
 | 
						||
# 回溯算法
 | 
						||
 | 
						||
回溯是一种通用算法,用于查找某些计算问题的所有(或某些)解决方案,特别是约束满足问题,逐步构建候选解决方案,并在确定候选不能时立即放弃每个部分候选_(“回溯”)_可能完成一个有效的解决方案。
 | 
						||
 | 
						||
### 示例问题(骑士游览问题)
 | 
						||
 | 
						||
_骑士被放置在空板的第一块上,按照国际象棋的规则移动,必须完全访问每个方块一次。_
 | 
						||
 | 
						||
###路径跟随Knight覆盖所有细胞 以下是8 x 8单元的棋盘。单元格中的数字表示骑士的移动数量。 [](https://commons.wikimedia.org/wiki/File:Knights_tour_(Euler).png)
 | 
						||
 | 
						||
### 骑士之旅的天真算法
 | 
						||
 | 
						||
朴素算法是逐个生成所有游览并检查生成的游览是否满足约束。
 | 
						||
```
 | 
						||
while there are untried tours 
 | 
						||
 { 
 | 
						||
   generate the next tour 
 | 
						||
   if this tour covers all squares 
 | 
						||
   { 
 | 
						||
      print this path; 
 | 
						||
   } 
 | 
						||
 } 
 | 
						||
```
 | 
						||
 | 
						||
### 骑士巡回赛的回溯算法
 | 
						||
 | 
						||
以下是奈特巡回赛问题的回溯算法。
 | 
						||
```
 | 
						||
If all squares are visited 
 | 
						||
    print the solution 
 | 
						||
 Else 
 | 
						||
   a) Add one of the next moves to solution vector and recursively 
 | 
						||
   check if this move leads to a solution. (A Knight can make maximum 
 | 
						||
   eight moves. We choose one of the 8 moves in this step). 
 | 
						||
   b) If the move chosen in the above step doesn't lead to a solution 
 | 
						||
   then remove this move from the solution vector and try other 
 | 
						||
   alternative moves. 
 | 
						||
   c) If none of the alternatives work then return false (Returning false 
 | 
						||
   will remove the previously added item in recursion and if false is 
 | 
						||
   returned by the initial call of recursion then "no solution exists" ) 
 | 
						||
```
 | 
						||
 | 
						||
### 更多信息
 | 
						||
 | 
						||
[维基百科](https://en.wikipedia.org/wiki/Backtracking)
 | 
						||
 | 
						||
[极客4极客](http://www.geeksforgeeks.org/backtracking-set-1-the-knights-tour-problem/)
 | 
						||
 | 
						||
[一个非常有趣的回溯介绍](https://www.hackerearth.com/practice/basic-programming/recursion/recursion-and-backtracking/tutorial/) |