45 lines
		
	
	
		
			835 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			835 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3f51000cf542c50ff07
 | ||
| title: 'Problem 136: Singleton difference'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301764
 | ||
| dashedName: problem-136-singleton-difference
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| The positive integers, x, y, and z, are consecutive terms of an arithmetic progression. Given that n is a positive integer, the equation, x2 − y2 − z2 = n, has exactly one solution when n = 20:
 | ||
| 
 | ||
| 132 − 102 − 72 = 20
 | ||
| 
 | ||
| In fact there are twenty-five values of n below one hundred for which the equation has a unique solution.
 | ||
| 
 | ||
| How many values of n less than fifty million have exactly one solution?
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `euler136()` should return 2544559.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(euler136(), 2544559);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function euler136() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler136();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |