45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4831000cf542c50ff95
 | |
| title: 'Problem 278: Linear Combinations of Semiprimes'
 | |
| challengeType: 5
 | |
| forumTopicId: 301928
 | |
| dashedName: problem-278-linear-combinations-of-semiprimes
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Given the values of integers 1 < a1 < a2 <... < an, consider the linear combination q1a1 + q2a2 + ... + qnan = b, using only integer values qk ≥ 0.
 | |
| 
 | |
| Note that for a given set of ak, it may be that not all values of b are possible. For instance, if a1 = 5 and a2 = 7, there are no q1 ≥ 0 and q2 ≥ 0 such that b could be 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 or 23.
 | |
| 
 | |
| In fact, 23 is the largest impossible value of b for a1 = 5 and a2 = 7. We therefore call f(5, 7) = 23. Similarly, it can be shown that f(6, 10, 15)=29 and f(14, 22, 77) = 195.
 | |
| 
 | |
| Find ∑ f(p*q,p*r,q\*r), where p, q and r are prime numbers and p < q < r < 5000.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler278()` should return 1228215747273908500.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler278(), 1228215747273908500);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler278() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler278();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |