47 lines
		
	
	
		
			1019 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1019 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5091000cf542c51001b
 | |
| title: 'Problem 408: Admissible paths through a grid'
 | |
| challengeType: 5
 | |
| forumTopicId: 302076
 | |
| dashedName: problem-408-admissible-paths-through-a-grid
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let's call a lattice point (x, y) inadmissible if x, y and x + y are all positive perfect squares.
 | |
| 
 | |
| For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not.
 | |
| 
 | |
| Consider a path from point (x1, y1) to point (x2, y2) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible.
 | |
| 
 | |
| Let P(n) be the number of admissible paths from (0, 0) to (n, n). It can be verified that P(5) = 252, P(16) = 596994440 and P(1000) mod 1 000 000 007 = 341920854.
 | |
| 
 | |
| Find P(10 000 000) mod 1 000 000 007.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler408()` should return 299742733.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler408(), 299742733);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler408() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler408();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |