45 lines
		
	
	
		
			712 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			712 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5331000cf542c510045
 | |
| title: 'Problem 454: Diophantine reciprocals III'
 | |
| challengeType: 5
 | |
| forumTopicId: 302127
 | |
| dashedName: problem-454-diophantine-reciprocals-iii
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| In the following equation x, y, and n are positive integers. 1/x + 1/y= 1/n
 | |
| 
 | |
| <!-- TODO Use MathJax -->
 | |
| 
 | |
| For a limit L we define F(L) as the number of solutions which satisfy x < y ≤ L.
 | |
| 
 | |
| We can verify that F(15) = 4 and F(1000) = 1069. Find F(1012).
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler454()` should return 5435004633092.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler454(), 5435004633092);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler454() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler454();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |