51 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f53d1000cf542c51004f
 | |
| title: 'Problem 464: Möbius function and intervals'
 | |
| challengeType: 5
 | |
| forumTopicId: 302139
 | |
| dashedName: problem-464-mbius-function-and-intervals
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The Möbius function, denoted μ(n), is defined as:
 | |
| 
 | |
| μ(n) = (-1)ω(n) if n is squarefree (where ω(n) is the number of distinct prime factors of n)
 | |
| 
 | |
| μ(n) = 0 if n is not squarefree.
 | |
| 
 | |
| Let P(a,b) be the number of integers n in the interval \[a,b] such that μ(n) = 1. Let N(a,b) be the number of integers n in the interval \[a,b] such that μ(n) = -1. For example, P(2,10) = 2 and N(2,10) = 4.
 | |
| 
 | |
| Let C(n) be the number of integer pairs (a,b) such that: 1 ≤ a ≤ b ≤ n, 99·N(a,b) ≤ 100·P(a,b), and 99·P(a,b) ≤ 100·N(a,b).
 | |
| 
 | |
| For example, C(10) = 13, C(500) = 16676 and C(10 000) = 20155319.
 | |
| 
 | |
| Find C(20 000 000).
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler464()` should return 198775297232878.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler464(), 198775297232878);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler464() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler464();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |