1.9 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			1.9 KiB
		
	
	
	
	
	
	
	
id, title, challengeType, forumTopicId, dashedName
| id | title | challengeType | forumTopicId | dashedName | 
|---|---|---|---|---|
| 5900f3ba1000cf542c50fecd | Problem 78: Coin partitions | 5 | 302191 | problem-78-coin-partitions | 
--description--
Let {p}(n) represent the number of different ways in which n coins can be separated into piles. For example, five coins can be separated into piles in exactly seven different ways, so {p}(5) = 7.
| Coin piles | 
|---|
| OOOOO | 
| OOOO O | 
| OOO OO | 
| OOO O O | 
| OO OO O | 
| OO O O O | 
| O O O O O | 
Find the least value of n for which {p}(n) is divisible by divisor.
--hints--
coinPartitions(7) should return a number.
assert(typeof coinPartitions(7) === 'number');
coinPartitions(7) should return 5.
assert.strictEqual(coinPartitions(7), 5);
coinPartitions(10000) should return 599.
assert.strictEqual(coinPartitions(10000), 599);
coinPartitions(100000) should return 11224.
assert.strictEqual(coinPartitions(100000), 11224);
coinPartitions(1000000) should return 55374.
assert.strictEqual(coinPartitions(1000000), 55374);
--seed--
--seed-contents--
function coinPartitions(divisor) {
  return true;
}
coinPartitions(7);
--solutions--
function coinPartitions(divisor) {
  const partitions = [1];
  let n = 0;
  while (partitions[n] !== 0) {
    n++;
    partitions.push(0);
    let i = 0;
    let pentagonal = 1;
    while (pentagonal <= n) {
      const sign = i % 4 > 1 ? -1 : 1;
      partitions[n] += sign * partitions[n - pentagonal];
      partitions[n] = partitions[n] % divisor;
      i++;
      let k = Math.floor(i / 2) + 1;
      if (i % 2 !== 0) {
        k *= -1;
      }
      pentagonal = Math.floor((k * (3 * k - 1)) / 2);
    }
  }
  return n;
}