75 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3761000cf542c50fe88
 | |
| title: 'Problem 9: Special Pythagorean triplet'
 | |
| challengeType: 5
 | |
| forumTopicId: 302205
 | |
| dashedName: problem-9-special-pythagorean-triplet
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| A Pythagorean triplet is a set of three natural numbers, `a` < `b` < `c`, for which,
 | |
| 
 | |
| <div style='text-align: center;'><var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>c</var><sup>2</sup></div>
 | |
| 
 | |
| For example, 3<sup>2</sup> + 4<sup>2</sup> = 9 + 16 = 25 = 5<sup>2</sup>.
 | |
| 
 | |
| There exists exactly one Pythagorean triplet for which `a` + `b` + `c` = 1000. Find the product `abc` such that `a` + `b` + `c` = `n`.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `specialPythagoreanTriplet(24)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof specialPythagoreanTriplet(24) === 'number');
 | |
| ```
 | |
| 
 | |
| `specialPythagoreanTriplet(24)` should return 480.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(specialPythagoreanTriplet(24), 480);
 | |
| ```
 | |
| 
 | |
| `specialPythagoreanTriplet(120)` should return 49920, 55080 or 60000
 | |
| 
 | |
| ```js
 | |
| assert([49920, 55080, 60000].includes(specialPythagoreanTriplet(120)));
 | |
| ```
 | |
| 
 | |
| `specialPythagoreanTriplet(1000)` should return 31875000.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(specialPythagoreanTriplet(1000), 31875000);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function specialPythagoreanTriplet(n) {
 | |
|  let sumOfabc = n;
 | |
| 
 | |
|  return true;
 | |
| }
 | |
| 
 | |
| specialPythagoreanTriplet(1000);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| const specialPythagoreanTriplet = (n)=>{
 | |
|  let sumOfabc = n;
 | |
|  let a,b,c;
 | |
|  for(a = 1; a<=sumOfabc/3; a++){
 | |
|  for(b = a+1; b<=sumOfabc/2; b++){
 | |
|  c = Math.sqrt(a*a+b*b);
 | |
|  if((a+b+c) == sumOfabc){
 | |
|  return a*b*c;
 | |
|  }
 | |
|  }
 | |
|  }
 | |
| }
 | |
| ```
 |