98 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			98 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5e4ce2f5ac708cc68c1df261
 | |
| title: Linear congruential generator
 | |
| challengeType: 5
 | |
| forumTopicId: 385266
 | |
| dashedName: linear-congruential-generator
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The [linear congruential generator](https://en.wikipedia.org/wiki/linear congruential generator) is a very simple example of a [random number generator](http://rosettacode.org/wiki/random number generator). All linear congruential generators use this formula:
 | |
| 
 | |
| $$r_{n + 1} = (a \times r_n + c) \bmod m$$
 | |
| 
 | |
| Where:
 | |
| 
 | |
| <ul>
 | |
| <li>$ r_0 $ is a seed.</li>
 | |
| <li>$r_1$, $r_2$, $r_3$, ..., are the random numbers.</li>
 | |
| <li>$a$, $c$, $m$ are constants.</li>
 | |
| </ul>
 | |
| 
 | |
| If one chooses the values of $a$, $c$ and $m$ with care, then the generator produces a uniform distribution of integers from $0$ to $m - 1$.
 | |
| 
 | |
| LCG numbers have poor quality. $r_n$ and $r\_{n + 1}$ are not independent, as true random numbers would be. Anyone who knows $r_n$ can predict $r\_{n + 1}$, therefore LCG is not cryptographically secure. The LCG is still good enough for simple tasks like [Miller-Rabin primality test](http://rosettacode.org/wiki/Miller-Rabin primality test), or [FreeCell deals](http://rosettacode.org/wiki/deal cards for FreeCell). Among the benefits of the LCG, one can easily reproduce a sequence of numbers, from the same $r_0$. One can also reproduce such sequence with a different programming language, because the formula is so simple.
 | |
| 
 | |
| # --instructions--
 | |
| 
 | |
| Write a function that takes $r_0,a,c,m,n$ as parameters and returns $r_n$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `linearCongGenerator` should be a function.
 | |
| 
 | |
| ```js
 | |
| assert(typeof linearCongGenerator == 'function');
 | |
| ```
 | |
| 
 | |
| `linearCongGenerator(324, 1145, 177, 2148, 3)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof linearCongGenerator(324, 1145, 177, 2148, 3) == 'number');
 | |
| ```
 | |
| 
 | |
| `linearCongGenerator(324, 1145, 177, 2148, 3)` should return `855`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(linearCongGenerator(324, 1145, 177, 2148, 3), 855);
 | |
| ```
 | |
| 
 | |
| `linearCongGenerator(234, 11245, 145, 83648, 4)` should return `1110`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(linearCongGenerator(234, 11245, 145, 83648, 4), 1110);
 | |
| ```
 | |
| 
 | |
| `linearCongGenerator(85, 11, 1234, 214748, 5)` should return `62217`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(linearCongGenerator(85, 11, 1234, 214748, 5), 62217);
 | |
| ```
 | |
| 
 | |
| `linearCongGenerator(0, 1103515245, 12345, 2147483648, 1)` should return `12345`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(linearCongGenerator(0, 1103515245, 12345, 2147483648, 1), 12345);
 | |
| ```
 | |
| 
 | |
| `linearCongGenerator(0, 1103515245, 12345, 2147483648, 2)` should return `1406932606`.
 | |
| 
 | |
| ```js
 | |
| assert.equal(
 | |
|   linearCongGenerator(0, 1103515245, 12345, 2147483648, 2),
 | |
|   1406932606
 | |
| );
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function linearCongGenerator(r0, a, c, m, n) {
 | |
| 
 | |
| }
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function linearCongGenerator(r0, a, c, m, n) {
 | |
|     for (let i = 0; i < n; i++) {
 | |
|         r0 = (a * r0 + c) % m;
 | |
|     }
 | |
|     return r0;
 | |
| }
 | |
| ```
 |