78 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4511000cf542c50ff63
 | ||
| challengeType: 5
 | ||
| title: 'Problem 228: Minkowski Sums'
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id='description'>
 | ||
| Let Sn be the regular n-sided polygon – or shape – whose vertices
 | ||
| 
 | ||
| vk (k = 1,2,…,n) have coordinates:
 | ||
| 
 | ||
|     xk   =  
 | ||
|         cos( 2k-1/n ×180° )
 | ||
| 
 | ||
|     yk   =  
 | ||
|         sin( 2k-1/n ×180° )
 | ||
|   Each Sn is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.
 | ||
| 
 | ||
| The Minkowski sum, S+T, of two shapes S and T is the result of
 | ||
| 
 | ||
| adding every point in S to every point in T, where point addition is performed coordinate-wise:
 | ||
| 
 | ||
| (u, v) + (x, y) = (u+x, v+y).
 | ||
| 
 | ||
| For example, the sum of S3 and S4 is the six-sided shape shown in pink below:
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| How many sides does S1864 + S1865 + … + S1909 have?
 | ||
| </section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id='instructions'>
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler228()</code> should return 86226.
 | ||
|     testString: 'assert.strictEqual(euler228(), 86226, "<code>euler228()</code> should return 86226.");'
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler228() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler228();
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |