* fix(curriculum): tests quotes * fix(curriculum): fill seed-teardown * fix(curriculum): fix tests and remove unneeded seed-teardown
		
			
				
	
	
	
		
			6.8 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			6.8 KiB
		
	
	
	
	
	
	
	
id, title, challengeType
| id | title | challengeType | 
|---|---|---|
| 587d825c367417b2b2512c90 | Breadth-First Search | 1 | 
Description
Infinity. This gives a reference for the case where a node may not be reachable from your start node.
Next, you'll want to go from the start node to its neighbors. These neighbors are one edge away and at this point you should add one unit of distance to the distances you're keeping track of.
Last, an important data structure that will help implement the breadth-first search algorithm is the queue. This is an array where you can add elements to one end and remove elements from the other end. This is also known as a FIFO or First-In-First-Out data structure.
Instructions
bfs() that takes an adjacency matrix graph (a two-dimensional array) and a node label root as parameters. The node label will just be the integer value of the node between 0 and n - 1, where n is the total number of nodes in the graph.
Your function will output a JavaScript object key-value pairs with the node and its distance from the root. If the node could not be reached, it should have a distance of Infinity.
Tests
tests:
  - text: 'The input graph <code>[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]</code> with a start node of <code>1</code> should return <code>{0: 1, 1: 0, 2: 1, 3: 2}</code>'
    testString: 'assert((function() { var graph = [[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]; var results = bfs(graph, 1); return isEquivalent(results, {0: 1, 1: 0, 2: 1, 3: 2})})(), ''The input graph <code>[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]</code> with a start node of <code>1</code> should return <code>{0: 1, 1: 0, 2: 1, 3: 2}</code>'');'
  - text: 'The input graph <code>[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]</code> with a start node of <code>1</code> should return <code>{0: 1, 1: 0, 2: 1, 3: Infinity}</code>'
    testString: 'assert((function() { var graph = [[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]; var results = bfs(graph, 1); return isEquivalent(results, {0: 1, 1: 0, 2: 1, 3: Infinity})})(), ''The input graph <code>[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]]</code> with a start node of <code>1</code> should return <code>{0: 1, 1: 0, 2: 1, 3: Infinity}</code>'');'
  - text: 'The input graph <code>[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]</code> with a start node of <code>0</code> should return <code>{0: 0, 1: 1, 2: 2, 3: 3}</code>'
    testString: 'assert((function() { var graph = [[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]; var results = bfs(graph, 0); return isEquivalent(results, {0: 0, 1: 1, 2: 2, 3: 3})})(), ''The input graph <code>[[0, 1, 0, 0], [1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]]</code> with a start node of <code>0</code> should return <code>{0: 0, 1: 1, 2: 2, 3: 3}</code>'');'
  - text: 'The input graph <code>[[0, 1], [1, 0]]</code> with a start node of <code>0</code> should return <code>{0: 0, 1: 1}</code>'
    testString: 'assert((function() { var graph = [[0, 1], [1, 0]]; var results = bfs(graph, 0); return isEquivalent(results, {0: 0, 1: 1})})(), ''The input graph <code>[[0, 1], [1, 0]]</code> with a start node of <code>0</code> should return <code>{0: 0, 1: 1}</code>'');'
Challenge Seed
function bfs(graph, root) {
  // Distance object returned
  var nodesLen = {};
  return nodesLen;
};
var exBFSGraph = [
  [0, 1, 0, 0],
  [1, 0, 1, 0],
  [0, 1, 0, 1],
  [0, 0, 1, 0]
];
console.log(bfs(exBFSGraph, 3));
After Test
// Source: http://adripofjavascript.com/blog/drips/object-equality-in-javascript.html
function isEquivalent(a, b) {
    // Create arrays of property names
    var aProps = Object.getOwnPropertyNames(a);
    var bProps = Object.getOwnPropertyNames(b);
    // If number of properties is different,
    // objects are not equivalent
    if (aProps.length != bProps.length) {
        return false;
    }
    for (var i = 0; i < aProps.length; i++) {
        var propName = aProps[i];
        // If values of same property are not equal,
        // objects are not equivalent
        if (a[propName] !== b[propName]) {
            return false;
        }
    }
    // If we made it this far, objects
    // are considered equivalent
    return true;
}
Solution
function bfs(graph, root) {
  // Distance object returned
  var nodesLen = {};
  // Set all distances to infinity
  for (var i = 0; i < graph.length; i++) {
    nodesLen[i] = Infinity;
  }
  nodesLen[root] = 0; // ...except root node
  var queue = [root]; // Keep track of nodes to visit
  var current; // Current node traversing
  // Keep on going until no more nodes to traverse
  while (queue.length !== 0) {
    current = queue.shift();
    // Get adjacent nodes from current node
    var curConnected = graph[current]; // Get layer of edges from current
    var neighborIdx = []; // List of nodes with edges
    var idx = curConnected.indexOf(1); // Get first edge connection
    while (idx !== -1) {
      neighborIdx.push(idx); // Add to list of neighbors
      idx = curConnected.indexOf(1, idx + 1); // Keep on searching
    }
    // Loop through neighbors and get lengths
    for (var j = 0; j < neighborIdx.length; j++) {
      // Increment distance for nodes traversed
      if (nodesLen[neighborIdx[j]] === Infinity) {
        nodesLen[neighborIdx[j]] = nodesLen[current] + 1;
        queue.push(neighborIdx[j]); // Add new neighbors to queue
      }
    }
  }
  return nodesLen;
}