Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-378-triangle-triples.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

809 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4e61000cf542c50fff9 Problem 378: Triangle Triples 5 302040 problem-378-triangle-triples

--description--

Let T(n) be the nth triangle number, so T(n) =

n (n+1)2

.

Let dT(n) be the number of divisors of T(n). E.g.: T(7) = 28 and dT(7) = 6.

Let Tr(n) be the number of triples (i, j, k) such that 1 ≤ i < j < k ≤ n and dT(i) > dT(j) > dT(k). Tr(20) = 14, Tr(100) = 5772 and Tr(1000) = 11174776.

Find Tr(60 000 000). Give the last 18 digits of your answer.

--hints--

euler378() should return 147534623725724700.

assert.strictEqual(euler378(), 147534623725724700);

--seed--

--seed-contents--

function euler378() {

  return true;
}

euler378();

--solutions--

// solution required