124 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3b61000cf542c50fec9
 | |
| title: '問題 74: 各位の階乗の連鎖'
 | |
| challengeType: 5
 | |
| forumTopicId: 302187
 | |
| dashedName: problem-74-digit-factorial-chains
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| 145 という数は、各位の階乗の和も 145 に等しいことがよく知られています。
 | |
| 
 | |
| $$1! + 4! + 5! = 1 + 24 + 120 = 145$$
 | |
| 
 | |
| 169 にはあまり知られていない性質があります。169 は、その数自体に戻るまでの数の連鎖が最長です。このようなループは次の 3 つしか存在しません。
 | |
| 
 | |
| $$\begin{align} &169 → 363601 → 1454 → 169\\\\ &871 → 45361 → 871\\\\ &872 → 45362 → 872\\\\ \end{align}$$
 | |
| 
 | |
| どの数から始めても最終的にはループに入るということを証明するのは難しくありません。 下に例を挙げます。
 | |
| 
 | |
| $$\begin{align} &69 → 363600 → 1454 → 169 → 363601\\ (→ 1454)\\\\ &78 → 45360 → 871 → 45361\\ (→ 871)\\\\ &540 → 145\\ (→ 145)\\\\ \end{align}$$
 | |
| 
 | |
| 69 から始めると 5 つの非反復項を持つ連鎖になりますが、100 万より小さい数から始めると、最長の非反復連鎖は 60 項です。
 | |
| 
 | |
| `n` 未満の数から始めた場合、ちょうど 60 項の非反復項を持つ連鎖はいくつありますか。
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `digitFactorialChains(2000)` は数値を返す必要があります。
 | |
| 
 | |
| ```js
 | |
| assert(typeof digitFactorialChains(2000) === 'number');
 | |
| ```
 | |
| 
 | |
| `digitFactorialChains(2000)` は `6` を返す必要があります。
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(digitFactorialChains(2000), 6);
 | |
| ```
 | |
| 
 | |
| `digitFactorialChains(100000)` は `42` を返す必要があります。
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(digitFactorialChains(100000), 42);
 | |
| ```
 | |
| 
 | |
| `digitFactorialChains(500000)` は `282` を返す必要があります。
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(digitFactorialChains(500000), 282);
 | |
| ```
 | |
| 
 | |
| `digitFactorialChains(1000000)` は `402` を返す必要があります。
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(digitFactorialChains(1000000), 402);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function digitFactorialChains(n) {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| digitFactorialChains(2000);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function digitFactorialChains(n) {
 | |
|   function sumDigitsFactorials(number) {
 | |
|     let sum = 0;
 | |
|     while (number > 0) {
 | |
|       sum += factorials[number % 10];
 | |
|       number = Math.floor(number / 10);
 | |
|     }
 | |
|     return sum;
 | |
|   }
 | |
| 
 | |
|   const factorials = [1];
 | |
|   for (let i = 1; i < 10; i++) {
 | |
|     factorials.push(factorials[factorials.length - 1] * i);
 | |
|   }
 | |
| 
 | |
|   const sequences = {
 | |
|     169: 3,
 | |
|     871: 2,
 | |
|     872: 2,
 | |
|     1454: 3,
 | |
|     45362: 2,
 | |
|     45461: 2,
 | |
|     3693601: 3
 | |
|   };
 | |
|   let result = 0;
 | |
| 
 | |
|   for (let i = 2; i < n; i++) {
 | |
|     let curNum = i;
 | |
|     let chainLength = 0;
 | |
|     const curSequence = [];
 | |
|     while (curSequence.indexOf(curNum) === -1) {
 | |
|       curSequence.push(curNum);
 | |
|       curNum = sumDigitsFactorials(curNum);
 | |
|       chainLength++;
 | |
|       if (sequences.hasOwnProperty(curNum) > 0) {
 | |
|         chainLength += sequences[curNum];
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (chainLength === 60) {
 | |
|       result++;
 | |
|     }
 | |
|     for (let j = 1; j < curSequence.length; j++) {
 | |
|       sequences[curSequence[j]] = chainLength - j;
 | |
|     }
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| ```
 |