Files
freeCodeCamp/curriculum/challenges/english/08-coding-interview-prep/project-euler/problem-28-number-spiral-diagonals.english.md
Kristofer Koishigawa 6cfd0fc503 fix: improve Project Euler descriptions, challenge seeds, and test cases (#38016)
* fix: improve Project Euler descriptions and test case

Improve formatting of Project Euler test descriptions. Also add poker hands array and new test case for problem 54

* feat: add typeof tests and gave functions proper names for first 100 challenges

* fix: continue fixing test descriptions and adding "before test" sections

* fix: address review comments

* fix: adjust grids in 18 and 67 and fix some text that reference files rather than the given arrays

* fix: implement bug fixes and improvements from review

* fix: remove console.log statements from seed and solution
2020-02-28 06:39:47 -06:00

2.2 KiB

id, challengeType, title, forumTopicId
id challengeType title forumTopicId
5900f3881000cf542c50fe9b 5 Problem 28: Number spiral diagonals 301930

Description

Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:

21
22 23 24
25

20  
7
 8  
9
10
19  6  
1
 2 11
18  
5
 4  
3
12
17
16 15 14
13

It can be verified that the sum of the numbers on the diagonals is 101.

What is the sum of the numbers on the diagonals in an n by n spiral formed in the same way?

Instructions

Tests

tests:
  - text: <code>spiralDiagonals(101)</code> should return a number.
    testString: assert(typeof spiralDiagonals(101) === 'number');
  - text: <code>spiralDiagonals(101)</code> should return 692101.
    testString: assert(spiralDiagonals(101) == 692101);
  - text: <code>spiralDiagonals(303)</code> should return 18591725.
    testString: assert(spiralDiagonals(303) == 18591725);
  - text: <code>spiralDiagonals(505)</code> should return 85986601.
    testString: assert(spiralDiagonals(505) == 85986601);
  - text: <code>spiralDiagonals(1001)</code> should return 669171001.
    testString: assert(spiralDiagonals(1001) == 669171001);

Challenge Seed

function spiralDiagonals(n) {
  // Good luck!
  return n;
}

spiralDiagonals(1001);

Solution

const spiralDiagonals = (n) => {
  const Sn2 = (n) => {
    return n*(n+1)*(2*n+1)/6;
  };
  const Sn = (n) => {
    return n*(n+1)/2;
  };
  let sum = (Sn2(n-1) + Sn(n-1) + n-1) + (Math.floor(n/2) + Sn2(n));
  return sum;
};