* fix: improve Project Euler descriptions and test case Improve formatting of Project Euler test descriptions. Also add poker hands array and new test case for problem 54 * feat: add typeof tests and gave functions proper names for first 100 challenges * fix: continue fixing test descriptions and adding "before test" sections * fix: address review comments * fix: adjust grids in 18 and 67 and fix some text that reference files rather than the given arrays * fix: implement bug fixes and improvements from review * fix: remove console.log statements from seed and solution
1.7 KiB
1.7 KiB
id, challengeType, title, forumTopicId
id | challengeType | title | forumTopicId |
---|---|---|---|
5900f3ae1000cf542c50fec1 | 5 | Problem 66: Diophantine equation | 302178 |
Description
Consider quadratic Diophantine equations of the form:
x2 – Dy2 = 1
For example, when D=13, the minimal solution in x is 6492 – 13×1802 = 1.
It can be assumed that there are no solutions in positive integers when D is square.
By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the following:
32 – 2×22 = 1
22 – 3×12 = 1
92 – 5×42 = 1
52 – 6×22 = 1
82 – 7×32 = 1
22 – 3×12 = 1
92 – 5×42 = 1
52 – 6×22 = 1
82 – 7×32 = 1
Hence, by considering minimal solutions in x for D ≤ 7, the largest x is obtained when D=5.
Find the value of D ≤ 1000 in minimal solutions of x for which the largest value of x is obtained.
Instructions
Tests
tests:
- text: <code>diophantineEquation()</code> should return a number.
testString: assert(typeof diophantineEquation() === 'number');
- text: <code>diophantineEquation()</code> should return 661.
testString: assert.strictEqual(diophantineEquation(), 661);
Challenge Seed
function diophantineEquation() {
// Good luck!
return true;
}
diophantineEquation();
Solution
// solution required