56 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3f51000cf542c50ff08
 | ||
| challengeType: 5
 | ||
| title: 'Problem 137: Fibonacci golden nuggets'
 | ||
| videoUrl: ''
 | ||
| localeTitle: 问题137:斐波那契金块
 | ||
| ---
 | ||
| 
 | ||
| ## Description
 | ||
| <section id="description">考虑无穷多项式系列AF(x)= xF1 + x2F2 + x3F3 + ...,其中Fk是斐波纳契数列中的第k项:1,1,2,3,5,8,...;也就是说,Fk = Fk-1 + Fk-2,F1 = 1且F2 = 1.对于这个问题,我们将对x的值感兴趣,其中AF(x)是正整数。令人惊讶的是AF(1/2)=(1/2).1 +(1/2)2.1 +(1/2)3.2 +(1/2)4.3 +(1/2)5.5 + ...... <p> = 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...... </p><p> = 2前五个自然数的x的相应值如下所示。 </p><p> xAF(x)√2-111/ 22(√13-2)/ 33(√89-5)/ 84(√34-3)/ 55 </p><p>如果x是理性的,我们将AF(x)称为金块,因为它们变得越来越稀少;例如,第10个金块是74049690.找到第15个金块。 </p></section>
 | ||
| 
 | ||
| ## Instructions
 | ||
| <section id="instructions">
 | ||
| </section>
 | ||
| 
 | ||
| ## Tests
 | ||
| <section id='tests'>
 | ||
| 
 | ||
| ```yml
 | ||
| tests:
 | ||
|   - text: <code>euler137()</code>应该返回1120149658760。
 | ||
|     testString: 'assert.strictEqual(euler137(), 1120149658760, "<code>euler137()</code> should return 1120149658760.");'
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Challenge Seed
 | ||
| <section id='challengeSeed'>
 | ||
| 
 | ||
| <div id='js-seed'>
 | ||
| 
 | ||
| ```js
 | ||
| function euler137() {
 | ||
|   // Good luck!
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler137();
 | ||
| 
 | ||
| ```
 | ||
| 
 | ||
| </div>
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| </section>
 | ||
| 
 | ||
| ## Solution
 | ||
| <section id='solution'>
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 | ||
| </section>
 |