140 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3781000cf542c50fe8b
 | |
| title: 'Problem 12: Highly divisible triangular number'
 | |
| challengeType: 5
 | |
| forumTopicId: 301746
 | |
| dashedName: problem-12-highly-divisible-triangular-number
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
 | |
| 
 | |
| <div style='text-align: center;'>1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...</div>
 | |
| 
 | |
| Let us list the factors of the first seven triangle numbers:
 | |
| 
 | |
| <div style='padding-left: 4em;'><b>1:</b> 1</div>
 | |
| <div style='padding-left: 4em;'><b>3:</b> 1, 3</div>
 | |
| <div style='padding-left: 4em;'><b>6:</b> 1, 2, 3, 6</div>
 | |
| <div style='padding-left: 4em;'><b>10:</b> 1, 2, 5, 10</div>
 | |
| <div style='padding-left: 4em;'><b>15:</b> 1, 3, 5, 15</div>
 | |
| <div style='padding-left: 4em;'><b>21:</b> 1, 3, 7, 21</div>
 | |
| <div style='padding-left: 4em;'><b>28:</b> 1, 2, 4, 7, 14, 28</div>
 | |
| 
 | |
| We can see that 28 is the first triangle number to have over five divisors.
 | |
| 
 | |
| What is the value of the first triangle number to have over `n` divisors?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `divisibleTriangleNumber(5)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof divisibleTriangleNumber(5) === 'number');
 | |
| ```
 | |
| 
 | |
| `divisibleTriangleNumber(5)` should return 28.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(divisibleTriangleNumber(5), 28);
 | |
| ```
 | |
| 
 | |
| `divisibleTriangleNumber(23)` should return 630.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(divisibleTriangleNumber(23), 630);
 | |
| ```
 | |
| 
 | |
| `divisibleTriangleNumber(167)` should return 1385280.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(divisibleTriangleNumber(167), 1385280);
 | |
| ```
 | |
| 
 | |
| `divisibleTriangleNumber(374)` should return 17907120.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(divisibleTriangleNumber(374), 17907120);
 | |
| ```
 | |
| 
 | |
| `divisibleTriangleNumber(500)` should return 76576500.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(divisibleTriangleNumber(500), 76576500);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function divisibleTriangleNumber(n) {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| divisibleTriangleNumber(500);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function divisibleTriangleNumber(n) {
 | |
|   if (n === 1) return 3;
 | |
|   let counter = 1;
 | |
|   let triangleNumber = counter++;
 | |
| 
 | |
| 
 | |
|  while (noOfFactors(triangleNumber) < n) {
 | |
|    triangleNumber += counter++;
 | |
|  }
 | |
| return triangleNumber;
 | |
| }
 | |
| 
 | |
| function noOfFactors(num) {
 | |
|   const primeFactors = getPrimeFactors(num);
 | |
|   let prod = 1;
 | |
|   for(let p in primeFactors) {
 | |
|     prod *= (primeFactors[p] + 1)
 | |
|   }
 | |
|   return prod;
 | |
| }
 | |
| 
 | |
| function getPrimeFactors(num) {
 | |
|   let n = num;
 | |
|   let primes = {};
 | |
| 
 | |
|   let p = 2;
 | |
|   let sqrt = Math.sqrt(num);
 | |
| 
 | |
|   function checkAndUpdate(inc) {
 | |
|     if (n % p === 0) {
 | |
|       const curr = primes[p];
 | |
|       if (curr) {
 | |
|         primes[p]++
 | |
|       } else {
 | |
|         primes[p] = 1;
 | |
|       }
 | |
|       n /= p;
 | |
|     } else {
 | |
|       p += inc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while(p === 2 && p <= n) {
 | |
|     checkAndUpdate(1);
 | |
|   }
 | |
| 
 | |
|   while (p <= n && p <= sqrt) {
 | |
|     checkAndUpdate(2);
 | |
|   }
 | |
|   if(Object.keys(primes).length === 0) {
 | |
|     primes[num] = 1;
 | |
|   } else if(n !== 1) {
 | |
|     primes[n] = 1;
 | |
|   }
 | |
|   return primes;
 | |
| }
 | |
| ```
 |