47 lines
		
	
	
		
			809 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			809 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4451000cf542c50ff57
 | |
| title: 'Problem 216: Investigating the primality of numbers of the form 2n2-1'
 | |
| challengeType: 5
 | |
| forumTopicId: 301858
 | |
| dashedName: problem-216-investigating-the-primality-of-numbers-of-the-form-2n2-1
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Consider numbers t(n) of the form t(n) = 2n2-1 with n > 1.
 | |
| 
 | |
| The first such numbers are 7, 17, 31, 49, 71, 97, 127 and 161.
 | |
| 
 | |
| It turns out that only 49 = 7\*7 and 161 = 7\*23 are not prime.
 | |
| 
 | |
| For n ≤ 10000 there are 2202 numbers t(n) that are prime.
 | |
| 
 | |
| How many numbers t(n) are prime for n ≤ 50,000,000 ?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler216()` should return 5437849.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler216(), 5437849);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler216() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler216();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |