41 lines
		
	
	
		
			811 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			41 lines
		
	
	
		
			811 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f47e1000cf542c50ff90
 | |
| title: 'Problem 273: Sum of Squares'
 | |
| challengeType: 5
 | |
| forumTopicId: 301923
 | |
| dashedName: problem-273-sum-of-squares
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Consider equations of the form: a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer.
 | |
| 
 | |
| For N=65 there are two solutions: a=1, b=8 and a=4, b=7. We call S(N) the sum of the values of a of all solutions of a2 + b2 = N, 0 ≤ a ≤ b, a, b and N integer. Thus S(65) = 1 + 4 = 5. Find ∑S(N), for all squarefree N only divisible by primes of the form 4k+1 with 4k+1 < 150.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler273()` should return 2032447591196869000.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler273(), 2032447591196869000);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler273() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler273();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |