43 lines
		
	
	
		
			891 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			891 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4c71000cf542c50ffd8
 | |
| title: 'Problem 346: Strong Repunits'
 | |
| challengeType: 5
 | |
| forumTopicId: 302005
 | |
| dashedName: problem-346-strong-repunits
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The number 7 is special, because 7 is 111 written in base 2, and 11 written in base 6 (i.e. 710 = 116 = 1112). In other words, 7 is a repunit in at least two bases b > 1.
 | |
| 
 | |
| We shall call a positive integer with this property a strong repunit. It can be verified that there are 8 strong repunits below 50: {1,7,13,15,21,31,40,43}. Furthermore, the sum of all strong repunits below 1000 equals 15864.
 | |
| 
 | |
| Find the sum of all strong repunits below 1012.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler346()` should return 336108797689259260.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler346(), 336108797689259260);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler346() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler346();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |