133 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f38f1000cf542c50fea2
 | |
| title: 'Problem 35: Circular primes'
 | |
| challengeType: 5
 | |
| forumTopicId: 302009
 | |
| dashedName: problem-35-circular-primes
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
 | |
| 
 | |
| There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
 | |
| 
 | |
| How many circular primes are there below `n`, whereas 100 ≤ `n` ≤ 1000000?
 | |
| 
 | |
| **Note:**
 | |
| 
 | |
| Circular primes individual rotation can exceed `n`.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `circularPrimes(100)` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof circularPrimes(100) === 'number');
 | |
| ```
 | |
| 
 | |
| `circularPrimes(100)` should return 13.
 | |
| 
 | |
| ```js
 | |
| assert(circularPrimes(100) == 13);
 | |
| ```
 | |
| 
 | |
| `circularPrimes(100000)` should return 43.
 | |
| 
 | |
| ```js
 | |
| assert(circularPrimes(100000) == 43);
 | |
| ```
 | |
| 
 | |
| `circularPrimes(250000)` should return 45.
 | |
| 
 | |
| ```js
 | |
| assert(circularPrimes(250000) == 45);
 | |
| ```
 | |
| 
 | |
| `circularPrimes(500000)` should return 49.
 | |
| 
 | |
| ```js
 | |
| assert(circularPrimes(500000) == 49);
 | |
| ```
 | |
| 
 | |
| `circularPrimes(750000)` should return 49.
 | |
| 
 | |
| ```js
 | |
| assert(circularPrimes(750000) == 49);
 | |
| ```
 | |
| 
 | |
| `circularPrimes(1000000)` should return 55.
 | |
| 
 | |
| ```js
 | |
| assert(circularPrimes(1000000) == 55);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function circularPrimes(n) {
 | |
| 
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| circularPrimes(1000000);
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| function rotate(n) {
 | |
|   if (n.length == 1) return n;
 | |
|   return n.slice(1) + n[0];
 | |
| }
 | |
| 
 | |
| function circularPrimes(n) {
 | |
|   // Nearest n < 10^k
 | |
|   const bound = 10 ** Math.ceil(Math.log10(n));
 | |
|   const primes = [0, 0, 2];
 | |
|   let count = 0;
 | |
| 
 | |
|   // Making primes array
 | |
|   for (let i = 4; i <= bound; i += 2) {
 | |
|     primes.push(i - 1);
 | |
|     primes.push(0);
 | |
|   }
 | |
| 
 | |
|   // Getting upperbound
 | |
|   const upperBound = Math.ceil(Math.sqrt(bound));
 | |
| 
 | |
|   // Setting other non-prime numbers to 0
 | |
|   for (let i = 3; i < upperBound; i += 2) {
 | |
|     if (primes[i]) {
 | |
|       for (let j = i * i; j < bound; j += i) {
 | |
|         primes[j] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterating through the array
 | |
|   for (let i = 2; i < n; i++) {
 | |
|     if (primes[i]) {
 | |
|       let curr = String(primes[i]);
 | |
|       let tmp = 1; // tmp variable to hold the no of rotations
 | |
|       for (let x = rotate(curr); x != curr; x = rotate(x)) {
 | |
|         if (x > n && primes[x]) {
 | |
|           continue;
 | |
|         }
 | |
|         else if (!primes[x]) {
 | |
|           // If the rotated value is 0 then it isn't a circular prime, break the loop
 | |
|           tmp = 0;
 | |
|           break;
 | |
|         }
 | |
|         tmp++;
 | |
|         primes[x] = 0;
 | |
|       }
 | |
|       count += tmp;
 | |
|     }
 | |
|   }
 | |
|   return count;
 | |
| }
 | |
| ```
 |