45 lines
		
	
	
		
			848 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			848 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
---
 | 
						||
id: 5900f5131000cf542c510024
 | 
						||
title: 'Problem 421: Prime factors of n15+1'
 | 
						||
challengeType: 5
 | 
						||
forumTopicId: 302091
 | 
						||
dashedName: problem-421-prime-factors-of-n151
 | 
						||
---
 | 
						||
 | 
						||
# --description--
 | 
						||
 | 
						||
Numbers of the form n15+1 are composite for every integer n > 1.
 | 
						||
 | 
						||
For positive integers n and m let s(n,m) be defined as the sum of the distinct prime factors of n15+1 not exceeding m.
 | 
						||
 | 
						||
E.g. 215+1 = 3×3×11×331. So s(2,10) = 3 and s(2,1000) = 3+11+331 = 345.
 | 
						||
 | 
						||
Also 1015+1 = 7×11×13×211×241×2161×9091. So s(10,100) = 31 and s(10,1000) = 483. Find ∑ s(n,108) for 1 ≤ n ≤ 1011.
 | 
						||
 | 
						||
# --hints--
 | 
						||
 | 
						||
`euler421()` should return 2304215802083466200.
 | 
						||
 | 
						||
```js
 | 
						||
assert.strictEqual(euler421(), 2304215802083466200);
 | 
						||
```
 | 
						||
 | 
						||
# --seed--
 | 
						||
 | 
						||
## --seed-contents--
 | 
						||
 | 
						||
```js
 | 
						||
function euler421() {
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
euler421();
 | 
						||
```
 | 
						||
 | 
						||
# --solutions--
 | 
						||
 | 
						||
```js
 | 
						||
// solution required
 | 
						||
```
 |