45 lines
		
	
	
		
			821 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			821 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5201000cf542c510032
 | |
| title: 'Problem 435: Polynomials of Fibonacci numbers'
 | |
| challengeType: 5
 | |
| forumTopicId: 302106
 | |
| dashedName: problem-435-polynomials-of-fibonacci-numbers
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The Fibonacci numbers {fn, n ≥ 0} are defined recursively as fn = fn-1 + fn-2 with base cases f0 = 0 and f1 = 1.
 | |
| 
 | |
| Define the polynomials {Fn, n ≥ 0} as Fn(x) = ∑fixi for 0 ≤ i ≤ n.
 | |
| 
 | |
| For example, F7(x) = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7, and F7(11) = 268357683.
 | |
| 
 | |
| Let n = 1015. Find the sum \[∑0≤x≤100 Fn(x)] mod 1307674368000 (= 15!).
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `euler435()` should return 252541322550.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(euler435(), 252541322550);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function euler435() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| euler435();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |