61 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			61 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f3a51000cf542c50feb8
 | |
| title: 'Problem 57: Square root convergents'
 | |
| challengeType: 5
 | |
| forumTopicId: 302168
 | |
| dashedName: problem-57-square-root-convergents
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| It is possible to show that the square root of two can be expressed as an infinite continued fraction.
 | |
| 
 | |
| <div style='text-align: center;'>$\sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac 1 {2+ \dots}}}$</div>
 | |
| 
 | |
| By expanding this for the first four iterations, we get:
 | |
| 
 | |
| $1 + \\frac 1 2 = \\frac 32 = 1.5$
 | |
| 
 | |
| $1 + \\frac 1 {2 + \\frac 1 2} = \\frac 7 5 = 1.4$
 | |
| 
 | |
| $1 + \\frac 1 {2 + \\frac 1 {2+\\frac 1 2}} = \\frac {17}{12} = 1.41666 \\dots$
 | |
| 
 | |
| $1 + \\frac 1 {2 + \\frac 1 {2+\\frac 1 {2+\\frac 1 2}}} = \\frac {41}{29} = 1.41379 \\dots$
 | |
| 
 | |
| The next three expansions are $\\frac {99}{70}$, $\\frac {239}{169}$, and $\\frac {577}{408}$, but the eighth expansion, $\\frac {1393}{985}$, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
 | |
| 
 | |
| In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `squareRootConvergents()` should return a number.
 | |
| 
 | |
| ```js
 | |
| assert(typeof squareRootConvergents() === 'number');
 | |
| ```
 | |
| 
 | |
| `squareRootConvergents()` should return 153.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(squareRootConvergents(), 153);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function squareRootConvergents() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| squareRootConvergents();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |