64 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3a91000cf542c50febc
 | ||
| title: 'Problem 61: Cyclical figurate numbers'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302173
 | ||
| dashedName: problem-61-cyclical-figurate-numbers
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:
 | ||
| 
 | ||
| | Type of Number | Formula                                                               | Sequence              |
 | ||
| | -------------- | --------------------------------------------------------------------- | --------------------- |
 | ||
| | Triangle       | P<sub>3</sub>,<var><sub>n</sub></var>=<var>n</var>(<var>n</var>+1)/2  | 1, 3, 6, 10, 15, ...  |
 | ||
| | Square         | P<sub>4</sub>,<var><sub>n</sub></var>=<var>n</var><sup>2</sup>        | 1, 4, 9, 16, 25, ...  |
 | ||
| | Pentagonal     | P<sub>5</sub>,<var><sub>n</sub></var>=<var>n</var>(3<var>n</var>−1)/2 | 1, 5, 12, 22, 35, ... |
 | ||
| | Hexagonal      | P<sub>6</sub>,<var><sub>n</sub></var>=<var>n</var>(2<var>n</var>−1)   | 1, 6, 15, 28, 45, ... |
 | ||
| | Heptagonal     | P<sub>7</sub>,<var><sub>n</sub></var>=<var>n</var>(5<var>n</var>−3)/2 | 1, 7, 18, 34, 55, ... |
 | ||
| | Octagonal      | P<sub>8</sub>,<var><sub>n</sub></var>=<var>n</var>(3<var>n</var>−2)   | 1, 8, 21, 40, 65, ... |
 | ||
| 
 | ||
| The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
 | ||
| 
 | ||
| <ol>
 | ||
|   <li>The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).</li>
 | ||
|   <li>Each polygonal type: triangle (P<sub>3,127</sub> = 8128), square (P<sub>4,91</sub> = 8281), and pentagonal (P<sub>5,44</sub> = 2882), is represented by a different number in the set.</li>
 | ||
|   <li>This is the only set of 4-digit numbers with this property.</li>
 | ||
| </ol>
 | ||
| 
 | ||
| Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented by a different number in the set.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `cyclicalFigurateNums()` should return a number.
 | ||
| 
 | ||
| ```js
 | ||
| assert(typeof cyclicalFigurateNums() === 'number');
 | ||
| ```
 | ||
| 
 | ||
| `cyclicalFigurateNums()` should return 28684.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(cyclicalFigurateNums(), 28684);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function cyclicalFigurateNums() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| cyclicalFigurateNums();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |