65 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3ae1000cf542c50fec1
 | ||
| title: 'Problem 66: Diophantine equation'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302178
 | ||
| dashedName: problem-66-diophantine-equation
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Consider quadratic Diophantine equations of the form:
 | ||
| 
 | ||
| <div style='text-align: center;'>x<sup>2</sup> – Dy<sup>2</sup> = 1</div>
 | ||
| 
 | ||
| For example, when D=13, the minimal solution in x is 649<sup>2</sup> – 13×180<sup>2</sup> = 1.
 | ||
| 
 | ||
| It can be assumed that there are no solutions in positive integers when D is square.
 | ||
| 
 | ||
| By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the following:
 | ||
| 
 | ||
| <div style='margin-left: 2em;'>
 | ||
|   3<sup>2</sup> – 2×2<sup>2</sup> = 1<br>
 | ||
|   2<sup>2</sup> – 3×1<sup>2</sup> = 1<br>
 | ||
|   <strong><span style='color: red;'>9</span></strong><sup>2</sup> – 5×4<sup>2</sup> = 1<br>
 | ||
|   5<sup>2</sup> – 6×2<sup>2</sup> = 1<br>
 | ||
|   8<sup>2</sup> – 7×3<sup>2</sup> = 1<br>
 | ||
| </div>
 | ||
| 
 | ||
| Hence, by considering minimal solutions in `x` for D ≤ 7, the largest `x` is obtained when D=5.
 | ||
| 
 | ||
| Find the value of D ≤ 1000 in minimal solutions of `x` for which the largest value of `x` is obtained.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `diophantineEquation()` should return a number.
 | ||
| 
 | ||
| ```js
 | ||
| assert(typeof diophantineEquation() === 'number');
 | ||
| ```
 | ||
| 
 | ||
| `diophantineEquation()` should return 661.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(diophantineEquation(), 661);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function diophantineEquation() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| diophantineEquation();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |